Macroscopical and Scanning Electron Microscopical Studies on the Rectal Caeca of Three Different Habitually Feeding Birds

1Ragaa M. El Deeb, 2Abdel Razik H. Farrag, 3Samia M. Abd El Wahab and 3Shimaa A. Eltatawy

1Department of Zoology, Faculty of Science, Ain Shams University, Cairo, Egypt.
2Pathology Department, Medical Research Division, National Research Centre, Cairo, Egypt.
3Department of Zoology, Faculty of Science, Al AZhar University, Cairo, Egypt.

Received: 20 February 2017 / Accepted: 10 April / Publication Date: 15 April 2017

ABSTRACT

The present investigation was carried out to study the variations of the morphology and scanning electron microscopy of rectal caeca in three birds, Coturnix coturnix, Cairina moschata and Athene noctua to understand the role of caeca in digestion. This study shows that, there is a great difference in the caecal morphology and structures between the three selected birds. The present findings revealed that the rectal caeca are composed of three regions, proximal, middle and distal. Also the caeca show different colours as well as asymmetrical lengths. At the level of the scanning electron microscope study there is a great difference in the mucosal sculpturing (microornamentation) between the three selected birds. These differences can be related to the environmental habits preferences of the birds and support those of other studies that the caecal development is related to diet.

Key words: Rectal caeca - Morphology – Scanning - Mucosal microornamentation.

Introduction

Avian caeca are blind-ending sacs that extend from the proximal end of the colon. They range in size from large and paired to small and single or may be completely absent. Each caecal sac consists of 3 parts: proximal part or base, middle and distal part or apex. In most birds, right and left caeca arise laterally at the junction of the small and large intestines; in a few species, the caeca open into the rectum ventrally or dorsally. In some species (e.g., herons, bitterns), only one caecum is present and in the secretary bird, there are two pairs of caeca (McLelland 1989). A relationship between the size of the caeca and diet has been proposed (Meyer 2009). In this connection, it is of interest that some carnivores have caeca that are poorly developed and often vestigial (hawks); in others, they are very long and expanded like in owls (Hellmann, 2007). The examined birds in this study; quails, ducks and owls have the best developed caeca (Clench & Mathias, 1995). In this study, the caeca of the three habitually different birds were examined to reveal the different patterns as well as establishing of basal data on the different sculpturing of the mucosal surface of the caeca of the three birds.

Material and Methods

Animals:

In the present work, birds from three different feeding habits were selected. Five adult healthy birds of each sex were obtained from 1- a quail farm in Kaffr Elshikh, Coturnix coturnix (common quail), 2- a duck farm in Cairo, Cairina moschata (Muscovy duck) and 3- trapped alive from caves in Abo-Rwash area of Giza pyramids, Athene noctua (little owl). The specimens were sacrificed and rapidly dissected (Fig.1 A, B and C).

The macroscopic observations:

The orifice, position, shape and the color of right and left caeca were recorded and the caeca of each bird were isolated at the iliocaecal junction and separated from mesenteries and iliocaecal...
ligaments. The digestive tracts as well as caeca were gently straightened on a flat plane and the full length of digestive tract and each caecum measured using slide calipers. The percentages of mean length of caeca related to the length of the digestive tract were reported. The differences between the length of right and left caeca also analyzed.

Fig. 1: Photographs of the (A) common quail, (B) Muscovy duck and (C) little owl.

The Preparation of samples for Scanning Electron Microscope (SEM):

For scanning electron microscope the caecal tissues divided into 3 equal segments: proximal (closest to ileo-caecal junction), middle, and distal (blind end). All caecal regions samples: proximal, middle, and distal were:

1- fixed in 4% glutaradehyde in 0.2 M sodium cacodylate buffer (pH7.3) for 4 hrs., then post fixed in 1% aqueous OsO4 for 2 hrs.
2- rinsed three times in the same buffer (sodium cacodylate buffer).
3- dehydrated through a graded ethanol series from 10 -100%, 10 min. in each one except the last one 100% for 30 min. for three changes.
4- dehydrated using Critical Point Dried instrument with liquid CO2 and mounted on cupper stubs with double- sided adhesive tape, coated with gold using S150A Sputter Coater (Edwards-England).
5- The specimens were examined and photographed by using of scanning electron microscope (Quanta FEG 250) in National Research Centre, Dokki, Cairo.

Results

I - The macroscopic observations:

a-The orifice and position:

The caeca of all three birds are paired. The paired caeca of duck and owl arise from the lateral walls of the rectum opposite one another, close to the junction with the ileum. While in quail, it arises ventrolaterally. Both the caeca are located in the intestinal peritoneal cavity and attached to the ileum by the peritoneal folds called ileo-caecal ligaments (Fig. 2 A, B and C).
Fig. 2: Photograph show the alimentary canal and orifices of caeca of the (A) common quail, (B) Muscovy duck and (C) little owl.

b-The shape and colour:

The shape of the proximal region in the three birds is long narrow cylindrical neck. In quail caeca it began with dome-like protrusions which hemispheric or spherical in shape and represented caecal tonsil. The middle part of quails is long and narrow. In owls it is long and narrow and becomes ampullated at the end of this zone. While in ducks caeca the middle zone has expanded leaf like shape. The distal zone of each caeca has a different shape; it has a falciform sac with rounded tip in quail caeca but in ducks it has a pointed end. However in owls the distal zone appears as a sac with rounded end (Fig. 3). The colour of caeca differs in each bird depending, on if the caeca full or empty. When they are empty they appear in quails, ducks and owls as dark salmon, grayish pale yellow and umber brown respectively. When they are full the colour appears in quails, ducks and owls as maize, dark green and dark olive green respectively (Fig. 3).

Fig. 3: A photograph explains the shape and colour of caeca of common quail, Muscovy duck and little owl. (R. C. is Right caecum and L. C. is Left caecum).
c- Mean length of the caeca and its percentages related to the length of the digestive tract:

In quail, the results of the mean values of length of right and left caecum are 6.89 ± 0.22 and 7.5 ± 0.27 cm respectively. No significant difference is found between the length of the left and right caecum at \(P < 0.05 \). The percentage of these means gives values nearly equal 7.9% and 8.5% of the total length of the alimentary canal (Table 1).

The mean values of right and left caeca of ducks are 12.2 ± 0.62 cm and 13.67 ± 0.75 cm respectively, and the percentages exhibit about 5.2% and 5.9 % of the total length of the alimentary canal. No significant difference is found between the length of the left and right caecum at \(P < 0.05 \) (Table 1).

In case of owl, the findings shows that the mean values of length of right and left caecum are 4.51 ± 0.06 cm and 4.76* ± 0.09 cm respectively, and its percentages nearly equal 9.1% and 9.8%. There is a significant increase found in the length of the left caecum at \(P < 0.05 \) as compared with right one (Table 1).

Table 1: The difference of mean length between right and left caeca of the three birds.

<table>
<thead>
<tr>
<th></th>
<th>Quail caeca</th>
<th>Duck caeca</th>
<th>Owl caeca</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right caeca</td>
<td>6.89 ± 0.22</td>
<td>12.2 ± 0.62</td>
<td>4.51 ± 0.06</td>
</tr>
<tr>
<td>Left caeca</td>
<td>7.5 ± 0.27</td>
<td>13.67 ± 0.75</td>
<td>4.76* ± 0.09</td>
</tr>
<tr>
<td>T-test (p< .05)</td>
<td>0.10</td>
<td>0.15</td>
<td>0.04</td>
</tr>
</tbody>
</table>

II – Scanning electron microscopy:

a- The proximal zone:

In quail, scanning electron microscope examination of ceecal tonsil shows the aggregated masses of the lymphoid tissues in addition to few numbers of villi. The remaining part of the proximal zone shows the presence of numerous villi (Figs. 4 & 5). These villi exhibited different shapes like, leaf, tongue and finger or branched finger shapes (Fig. 6).

![Fig. 4: SEM micrograph of the cross section of the caecal tonsil of proximal zone of the quail caeca shows aggregation of lymphoid tissues (Scale bar: 1 mm).](image1)

![Fig. 5: SEM micrograph of the cross section of the proximal zone of the quail caeca (Scale bar: 1 mm).](image2)

![Fig. 6: SEM micrograph of the proximal zone of the quail caeca, leaf-like villi (L-V), tongue-like villi (T-V), finger-like villi (F-V) and branched finer like (B-V) (Scale bar: 500 µm).](image3)

The proximal zone of duck caeca shows the presence of number of villi with leaf shape mainly in addition to tongue like shape (Figs. 7&8).
In owl caeca, the proximal zone shows the presence of great number of villi (Fig. 9). These villi exhibited a tongue-like shape, leaf-like shape or foot-like shape. Occasionally, the villous surface is pitted by circular or oval holes of the goblet cells. The outlines of individual epithelial cells are flat-topped or gently convex outwards and take a honeycomb-like appearance on the villous surface (Figs. 10 and 11).

b- The middle zone:

The middle zone of the quail and duck caeca shows the presence of numbers of high plicae circulares (Fig. 12). The surfaces of the middle zone of the quail caeca shows the presence of great numbers of volcano like shape of crypts opening and absence of villi (Fig. 13).
Fig. 12: SEM micrograph of the cross section of the middle zone of the quail caeca shows plicae circulares (PC) (Scale bar: 1 mm).

Fig. 13: SEM micrograph of the middle zone of the quail caeca (scale bar: 100 μm) shows crypts opening (C) in the enlarged part (Scale bar: 50 μm).

Fig. 14: SEM micrograph of a cross section of the middle zone of the duck caeca, plicae circulares (PC) (Scale bar: 1 mm).

Fig. 15: SEM micrograph of the middle zone of the duck caeca (Scale bar: 500 μm) and magnified part shows interfering nets appearance of mucosa (Scale bar: 400 μm).

The middle zone of the owl caeca shows presence of tongue-like villi (Fig. 16).

Fig. 16: SEM micrograph of a cross section of the middle zone of the little owl caeca (Scale bar: 500 μm).

The sunflower-shape of the opening of crypts at the base of the villi appeared clearly. On the villous surface a honeycomb appearance of the epithelial cells as well as the pits of the goblet are observed (Figs. 17a, b and c).
c- The distal zone:

The distal zone of the quail and duck caeca shows a reduction in the height of plicae circulars (Figs. 18, 21 and 22).

![Images of SEM micrographs showing distal zone of caeca](image)

The surface of plicae circulares appears in quail caeca like a net and the openings of crypts in-between it. The crypts openings differ from volcano to sea anemone shape due to presence of microvilli on its surface (Figs. 19 and 20). The distal part of duck caeca shows wrinkle surface of plicae circulares and the mucosal surface with many cavities in-between (Fig. 23).

The distal part of owl caeca shows a saw-shape of the mucosa and absence of villi (Fig. 24). This zone also showed the presence of great number of parallel-ridged tract of small mucosal folds (Fig. 25).
Fig. 19: SEM micrograph of the distal zone of the quail caeca shows crypts opening (C) and plicae circulares (PC) (Scale bar: 200 µm).

Fig. 20: SEM micrograph of the distal zone of the quail caeca, the microvilli on opening of crypts giving it sea anemone shape (arrow) (Scale bar: 20 µm).

Fig. 23: SEM micrograph of the longitudinal section of the distal zone of the duck caeca shows wrinkle surface of the mucosal surface (Scale bar: 500 µm).

Fig. 24: SEM micrograph of the cross section of the distal zone of the little owl caeca (Scale bar: 500 µm).

Fig. 25: SEM micrograph of the distal zone of the owl caeca shows parallel mucosal folds (Scale bar: 400 µm).

Discussion

The present investigation is proposed to study, in a comparative manner, the morphological and ultra structures of the caeca in a granivorous bird, common quail (*Coturnix coturnix*); omnivorous bird, Muscovy duck (*Cairina moschata*) and carnivorous bird, little owl (*Athene noctua*). The correlation between the structure of the caeca of birds and their feeding habits demonstrates a close relationship between the caecal structure and the type of food eaten by the birds. These results consistent with previous studies which reported that the caeca of quail, duck and owl are long well developed caeca (Strong et al., 1990; Clench and Mathias, 1995; DeGolier et al. 1999; Działa-Szczepeńczyk 2006; Działa-Szczepeńczyk and Charuta 2009; Svihus et al., 2013).

The caeca attached to the ileum by the peritoneal folds called ileo-caecal ligaments and located in the intestinal peritoneal cavity, with the caecal bodies on the right side of the body and arose laterally into the walls of the rectum opposite one another, close to the junction with the ileum and this result is very similar to those observed in other birds by (Bailey et al. 1997; DeGolier et al. 1999; Działa-Szczepeńczyk 2006; Meyer et al. 2009 and Firdous and Lucy 2012).

On the other hand, the caeca in common quail arose ventrolaterally into the walls of the rectum opposite one another and this is coincides with that found in Japanese quail (Usha Kumary et al., 2009) and common quail (Zaher et al., 2012).

The caeca in the three birds divided into three zones, proximal and middle zones followed by a distal zone.

The proximal zone in all birds appears as long narrow cylindrical neck. A dome-like protrusions represented caecal tonsils are observed in the common quail caeca and this is similar to the results
observed by Kitagawa et al. (1998); Akter et al. (2006); Rezaian and Hamedi (2007) and Usha Kumary et al. (2009).

The middle zone is long, narrow and cylindrical in quail followed by ampullated part in the owl but in duck appears as expanded leaf like body. The distal zone is falciform sac with rounded end in quail, rounded end apex in owl and pointed end apex in duck. Such description is in accordance with that found in Japanese quail (Usha Kumary et al., 2009), common quail (Zaher et al., 2012), duck in general (Kitamura et al., 1976; Bailey et al., 1997 and Firdous and Lucy, 2012) and in some owls and carnivorous birds (Clench and Mathias, 1995; Hassouna, 2001; Meyer et al., 2009; Mot, 2010 and Hussein and Rezk, 2016).

The colour of caeca of the three birds is in consistent with that described by Bailey et al. (1997) and Alaeinovin et al. (2013) who stated that, the colour appears variable depending on if the caeca full or empty and on the kind of the diet.

Dziala-Szczepańczyk (2006) stated that the asymmetry of even internal organs of animals is a commonly observed phenomenon in nature and is called the bilateral asymmetry.

The recent study indicated that, there is no significant increase in mean length of left caeca when compared with the right caeca or between males and females of quail (Kitagawa et al., 1998; Majeed et al., 2009 and Usha Kumary et al., 2009) and in duck as in Dziala-Szczepańczyk and Betlejewska (2003) and Dziala-Szczepańczyk and Charuta (2009). On the other hand, the mean value of length in owl in this study indicated that the left caecum was longer than the right one but there is a significant increase when compared with the right caecum as in long-tailed carnivorous duck Clangula hyemalis (Dziala-Szczepańczyk, 2006).

The recent study recorded that, the scanning electron observations of the three birds showed the presence of great number of villi with different shapes in the proximal zone and explain the honeycomb appearance of the individual epithelial cells on the villous surface in the owl caeca. Such results are found in the different parts of the small intestine and caeca of many animals (Dahm et al., 1980; Kadhim et al., 2010 and Abo-Eleneen et al., 2014).

The middle zone of the quail and duck showed presence of number of high plicae circulars, crypts opening and absence of villi these results are in agreement with that found in (Dantzer et al., 1989; strong et al., 1990; Ferrer et al., 1991 and Chen et al., 2002).

The distal zone of the three birds showed that, absence of villi and presence of many parallel ridges. Such finding are reported in all researches about caeca (Fenna and Boag, 1974; Dantzer et al., 1989; strong et al., 1990; Ferrer et al., 1991; Chen et al., 2002 and Potter et al., 2006).

We can conclude from the present study that the morphological and ultrastructural differences in the caeca among the three examined birds exhibited important specific features reflecting the mode of life and feeding habits of these birds. We indicated that, the well developed caeca occur in omnivorous, some granivorous in addition to some carnivorous species. However this development is due to that, species those consuming the cell walls of plant seeds (granivorous) and those consuming the greens, fruits and insects (omnivorous) would be expected to have a well developed caeca. The relatively well developed caeca in non herbivorous species (little owl) are may be associated with the conservation of critical resources such as water and nitrogen.
References

